Mathematics > Combinatorics
[Submitted on 2 Apr 2007 (v1), last revised 17 Nov 2009 (this version, v3)]
Title:Decomposition numbers for finite Coxeter groups and generalised non-crossing partitions
View PDFAbstract: Given a finite irreducible Coxeter group $W$, a positive integer $d$, and types $T_1,T_2,...,T_d$ (in the sense of the classification of finite Coxeter groups), we compute the number of decompositions $c=\si_1\si_2 cdots\si_d$ of a Coxeter element $c$ of $W$, such that $\si_i$ is a Coxeter element in a subgroup of type $T_i$ in $W$, $i=1,2,...,d$, and such that the factorisation is "minimal" in the sense that the sum of the ranks of the $T_i$'s, $i=1,2,...,d$, equals the rank of $W$. For the exceptional types, these decomposition numbers have been computed by the first author. The type $A_n$ decomposition numbers have been computed by Goulden and Jackson, albeit using a somewhat different language. We explain how to extract the type $B_n$ decomposition numbers from results of Bóna, Bousquet, Labelle and Leroux on map enumeration. Our formula for the type $D_n$ decomposition numbers is new. These results are then used to determine, for a fixed positive integer $l$ and fixed integers $r_1\le r_2\le ...\le r_l$, the number of multi-chains $\pi_1\le \pi_2\le ...\le \pi_l$ in Armstrong's generalised non-crossing partitions poset, where the poset rank of $\pi_i$ equals $r_i$, and where the "block structure" of $\pi_1$ is prescribed. We demonstrate that this result implies all known enumerative results on ordinary and generalised non-crossing partitions via appropriate summations. Surprisingly, this result on multi-chain enumeration is new even for the original non-crossing partitions of Kreweras. Moreover, the result allows one to solve the problem of rank-selected chain enumeration in the type $D_n$ generalised non-crossing partitions poset, which, in turn, leads to a proof of Armstrong's $F=M$ Conjecture in type $D_n$.
Submission history
From: Christian Krattenthaler [view email][v1] Mon, 2 Apr 2007 14:10:05 UTC (59 KB)
[v2] Fri, 9 Jan 2009 11:03:54 UTC (61 KB)
[v3] Tue, 17 Nov 2009 10:18:51 UTC (61 KB)
Current browse context:
math.CO
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.