Mathematics > K-Theory and Homology
[Submitted on 18 Apr 2007 (v1), last revised 24 Apr 2007 (this version, v2)]
Title:Parallel computation of the rank of large sparse matrices from algebraic K-theory
View PDFAbstract: This paper deals with the computation of the rank and of some integer Smith forms of a series of sparse matrices arising in algebraic K-theory. The number of non zero entries in the considered matrices ranges from 8 to 37 millions. The largest rank computation took more than 35 days on 50 processors. We report on the actual algorithms we used to build the matrices, their link to the motivic cohomology and the linear algebra and parallelizations required to perform such huge computations. In particular, these results are part of the first computation of the cohomology of the linear group GL_7(Z).
Submission history
From: Giorgi Pascal [view email][v1] Wed, 18 Apr 2007 14:29:28 UTC (50 KB)
[v2] Tue, 24 Apr 2007 15:28:48 UTC (46 KB)
Current browse context:
math.KT
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.