General Relativity and Quantum Cosmology
[Submitted on 26 May 2007 (v1), last revised 17 Jun 2007 (this version, v3)]
Title:A Derivation of Einstein Gravity without the Axiom of Choice: Topology Hidden in GR
View PDFAbstract: A derivation of the equations of motion of general relativity is presented that does not invoke the Axiom of Choice, but requires the explicit construction of a choice function q for continuous three-space regions. The motivation for this (seemingly academic) endeavour is to take the background independence intrinsic to Einstein gravity one step further, and to assure that both the equations of motion and the way in which those equations of motion are derived are as self-consistent as possible. That is, solutions to the equations of motion of general relativity endow a three-space region with a physical and distinguishing geometry in four-dimensional space-time. However, in order to derive these equations of motion one should first be able to choose a three-space region without having any prior knowledge of its physically appropriate geometry. The expression of this choice process requires a three-dimensional topological manifold Q, to which all considered three-space regions belong, and that generates an equation of motion whose solutions are q. These solutions relate the effects of curvature to the source term through the topology of Q and constitute Einstein gravity. Q is given by 2T^3+3S^1xS^2, and is embedded in four dimensions. This points toward a hidden topological content for general relativity, best phrased as: Q and q provide a structure for how to choose a three-space region irrespective of what geometric properties it has, while at the same time Q and q determine that only GR can endow a three-space with those geometric properties. In this sense, avoiding the Axiom of Choice allows one to gain physical insight into GR. Possible links with holography are pointed out.
Submission history
From: Marco Spaans [view email][v1] Sat, 26 May 2007 17:30:42 UTC (11 KB)
[v2] Tue, 29 May 2007 19:45:13 UTC (12 KB)
[v3] Sun, 17 Jun 2007 19:57:11 UTC (13 KB)
Current browse context:
gr-qc
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.