Astrophysics
[Submitted on 1 Jun 2007]
Title:The early evolution of tidal dwarf galaxies
View PDFAbstract: Context: Dwarf galaxies can arise from self-gravitating structures emerging from tidal tails. What fraction of the known dwarf galaxies in the Local Universe can have this origin is still a matter of debate. Aims: In our effort to understand the origin and evolution of tidal dwarf galaxies and their correspondence with local objects, the first step is to understand how these galaxies (which are supposed to have a limited amount of dark matter) react to the feedback of the ongoing star formation. Methods: We make use of 2-D chemodynamical calculations in order to study the early evolution of isolated, dark matter-free dwarf galaxies. We present models in which feedback parameters are varied. We also compare the results with dark matter-dominated dwarf galaxy models. Results: All the considered models show that the star formation proceeds for more than 300 Myr, therefore dwarf galaxies without large dark matter halos are not necessarily quickly destroyed. The chemical evolution of these objects is consistent with the main chemical properties of the dSphs of the Local Group. Models with large dark matter halos show results consistent with models free of dark matter, indicating that the distribution of gas is more important than the depth of the potential well in determining the global behaviour of dSph-sized dwarf galaxies.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.