Astrophysics
[Submitted on 1 Jun 2007 (v1), last revised 17 Sep 2007 (this version, v2)]
Title:Red Sequence Cluster Finding in the Millennium Simulation
View PDFAbstract: We investigate halo mass selection properties of red-sequence cluster finders using galaxy populations of the Millennium Simulation (MS). A clear red sequence exists for MS galaxies in massive halos at redshifts z < 1, and we use this knowledge to inform a cluster-finding algorithm applied to 500 Mpc/h projections of the simulated volume. At low redshift (z=0.4), we find that 90% of the clusters found have galaxy membership dominated by a single, real-space halo, and that 10% are blended systems for which no single halo contributes a majority of a cluster's membership. At z=1, the fraction of blends increases to 22%, as weaker redshift evolution in observed color extends the comoving length probed by a fixed range of color. Other factors contributing to the increased blending at high-z include broadening of the red sequence and confusion from a larger number of intermediate mass halos hosting bright red galaxies of magnitude similar to those in higher mass halos. Our method produces catalogs of cluster candidates whose halo mass selection function, p(M|\Ngal,z), is characterized by a bimodal log-normal model with a dominant component that reproduces well the real-space distribution, and a redshift-dependent tail that is broader and displaced by a factor ~2 lower in mass. We discuss implications for X-ray properties of optically selected clusters and offer ideas for improving both mock catalogs and cluster-finding in future surveys.
Submission history
From: Joanne D. Cohn [view email][v1] Fri, 1 Jun 2007 20:04:45 UTC (172 KB)
[v2] Mon, 17 Sep 2007 14:21:06 UTC (200 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.