Mathematics > Optimization and Control
[Submitted on 2 Jun 2007 (v1), last revised 14 Jan 2008 (this version, v3)]
Title:Approximately bisimilar symbolic models for nonlinear control systems
View PDFAbstract: Control systems are usually modeled by differential equations describing how physical phenomena can be influenced by certain control parameters or inputs. Although these models are very powerful when dealing with physical phenomena, they are less suitable to describe software and hardware interfacing the physical world. For this reason there is a growing interest in describing control systems through symbolic models that are abstract descriptions of the continuous dynamics, where each "symbol" corresponds to an "aggregate" of states in the continuous model. Since these symbolic models are of the same nature of the models used in computer science to describe software and hardware, they provide a unified language to study problems of control in which software and hardware interact with the physical world. Furthermore the use of symbolic models enables one to leverage techniques from supervisory control and algorithms from game theory for controller synthesis purposes. In this paper we show that every incrementally globally asymptotically stable nonlinear control system is approximately equivalent (bisimilar) to a symbolic model. The approximation error is a design parameter in the construction of the symbolic model and can be rendered as small as desired. Furthermore if the state space of the control system is bounded the obtained symbolic model is finite. For digital control systems, and under the stronger assumption of incremental input-to-state stability, symbolic models can be constructed through a suitable quantization of the inputs.
Submission history
From: Paulo Tabuada [view email][v1] Sat, 2 Jun 2007 01:47:09 UTC (22 KB)
[v2] Tue, 5 Jun 2007 16:54:40 UTC (22 KB)
[v3] Mon, 14 Jan 2008 04:24:38 UTC (46 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.