Astrophysics
[Submitted on 3 Jun 2007]
Title:Collisional processes and size distribution in spatially extended debris discs
View PDFAbstract: We present a new multi-annulus code for the study of collisionally evolving extended debris discs. We first aim to confirm results obtained for a single-annulus system, namely that the size distribution in "real" debris discs always departs from the theoretical collisional equilibrium $dN\proptoR^{-3.5}dR$ power law, especially in the crucial size range of observable particles (<1cm), where it displays a characteristic wavy pattern. We also aim at studying how debris discs density distributions, scattered light luminosity profiles, and SEDs are affected by the coupled effect of collisions and radial mixing due to radiation pressure affected small grains. The size distribution evolution is modeled from micron-sized grains to 50km-sized bodies. The model takes into account the crucial influence of radiation pressure-affected small grains. We consider the collisional evolution of a fiducial a=120AU radius disc with an initial surface density in $\Sigma(a)\propto a^{\alpha}$. We show that the system's radial extension plays a crucial role: in most regions the collisional and size evolution of the dust is imposed by small particles on eccentric or unbound orbits produced further inside the disc. The spatial distribution of small grains strongly departs from the initial profile, while the bigger objects, containing most of the system's mass, still follow the initial distribution. This has consequences on the scattered--light radial profiles which get significantly flatter, and we propose an empirical law to trace back the distribution of large unseen parent bodies from the observed profiles. We finally provide empirical formula for the collisional size distribution and collision timescale that can be used for future debris disc modeling.
Submission history
From: Philippe Thebault [view email][v1] Sun, 3 Jun 2007 20:01:29 UTC (1,859 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.