Astrophysics
[Submitted on 4 Jun 2007 (v1), last revised 26 Jul 2007 (this version, v2)]
Title:The Kinematics of the Ultra-Faint Milky Way Satellites: Solving the Missing Satellite Problem
View PDFAbstract: We present Keck/DEIMOS spectroscopy of stars in 8 of the newly discovered ultra-faint dwarf galaxies around the Milky Way. We measure the velocity dispersions of Canes Venatici I and II, Ursa Major I and II, Coma Berenices, Hercules, Leo IV and Leo T from the velocities of 18 - 214 stars in each galaxy and find dispersions ranging from 3.3 to 7.6 km/s. The 6 galaxies with absolute magnitudes M_V < -4 are highly dark matter-dominated, with mass-to-light ratios approaching 1000. The measured velocity dispersions are inversely correlated with their luminosities, indicating that a minimum mass for luminous galactic systems may not yet have been reached. We also measure the metallicities of the observed stars and find that the 6 brightest of the ultra-faint dwarfs extend the luminosity-metallicity relationship followed by brighter dwarfs by 2 orders of magnitude in luminosity; several of these objects have mean metallicities as low as [Fe/H] = -2.3 and therefore represent some of the most metal-poor known stellar systems. We detect metallicity spreads of up to 0.5 dex in several objects, suggesting multiple star formation epochs. Having established the masses of the ultra-faint dwarfs, we re-examine the missing satellite problem. After correcting for the sky coverage of the SDSS, we find that the ultra-faint dwarfs substantially alleviate the discrepancy between the predicted and observed numbers of satellites around the Milky Way, but there are still a factor of ~4 too few dwarf galaxies over a significant range of masses. We show that if galaxy formation in low-mass dark matter halos is strongly suppressed after reionization, the simulated circular velocity function of CDM subhalos can be brought into approximate agreement with the observed circular velocity function of Milky Way satellite galaxies. [slightly abridged]
Submission history
From: Joshua Simon [view email][v1] Mon, 4 Jun 2007 20:23:02 UTC (195 KB)
[v2] Thu, 26 Jul 2007 04:58:37 UTC (199 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.