Astrophysics
[Submitted on 6 Jun 2007 (v1), last revised 11 Sep 2007 (this version, v2)]
Title:Constraining Warm Dark Matter using QSO gravitational lensing
View PDFAbstract: Warm Dark Matter (WDM) has been invoked to resolve apparent conflicts of Cold Dark Matter (CDM) models with observations on subgalactic scales. In this work we provide a new and independent lower limit for the WDM particle mass (e.g. sterile neutrino) through the analysis of image fluxes in gravitationally lensed QSOs.
Starting from a theoretical unperturbed cusp configuration we analyze the effects of intergalactic haloes in modifying the fluxes of QSO multiple images, giving rise to the so-called anomalous flux ratio. We found that the global effect of such haloes strongly depends on their mass/abundance ratio and it is maximized for haloes in the mass range $10^6-10^8 \Msun$.
This result opens up a new possibility to constrain CDM predictions on small scales and test different warm candidates, since free streaming of warm dark matter particles can considerably dampen the matter power spectrum in this mass range. As a consequence, while a ($\Lambda$)CDM model is able to produce flux anomalies at a level similar to those observed, a WDM model, with an insufficiently massive particle, fails to reproduce the observational evidences.
Our analysis suggests a lower limit of a few keV ($m_{\nu} \sim 10$) for the mass of warm dark matter candidates in the form of a sterile neutrino. This result makes sterile neutrino Warm Dark Matter less attractive as an alternative to Cold Dark Matter, in good agreement with previous findings from Lyman-$\alpha$ forest and Cosmic Microwave Background analysis.
Submission history
From: Marco Miranda [view email][v1] Wed, 6 Jun 2007 20:11:46 UTC (75 KB)
[v2] Tue, 11 Sep 2007 09:59:40 UTC (64 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.