Astrophysics
[Submitted on 7 Jun 2007]
Title:The Compact X-ray Source 1E 1547.0-5408 and the Radio Shell G327.24-0.13: A New Proposed Association between a Candidate Magnetar and a Candidate Supernova Remnant
View PDFAbstract: We present X-ray, infrared and radio observations of the field centered on X-ray source 1E 1547.0-5408 in the Galactic Plane. A new Chandra observation of this source shows it is unresolved at arc-second resolution, and a new XMM observation shows that its X-ray spectrum is best described by an absorbed power-law and blackbody model. A comparison of the X-ray flux observed from this source between 1980 and 2006 reveals that its absorbed 0.5-10 keV X-ray flux decreased from ~2x10^-12 ergs cm-2 s-1 to ~3x10^-13 ergs cm-2 during this period. The most recent XMM observation allows us to put a 5 sigma confidence upper limit of 14% for the 0.5-10 keV peak-to-peak pulsed fraction. A near-infrared observation of this field shows a source with magnitude Ks = 15.9+/-0.2 near the position of 1E 1547.0-5408, but the implied X-ray to infrared flux ratio indicates the infrared emission is from an unrelated field source, allowing us to limit the IR magnitude of 1E 1547.0-5408 to >17.5. Archival radio observations reveal that 1E 1547.0-5408 sits at the center of a faint, small (4' diameter) radio shell, G327.24-0.13, which is possibly a previously unidentified supernova remnant. The X-ray properties of 1E 1547.0-5408 suggest that this source is a magnetar - a young neutron star whose X-ray emission is powered by the decay of its extremely strong magnetic field. The spatial coincidence between this source and G327.24-0.13 suggests that 1E 1547.0-5408 is associated with a young supernova remnant, supporting a neutron star interpretation. Additional observations are needed to confirm the nature of both 1E 1547.0-5408 and G327.24-0.13, and to determine if these sources are associated. If so, this pair will be an important addition to the small number of known associations between magnetars and supernova remnants.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.