Astrophysics
[Submitted on 9 Jun 2007 (v1), last revised 24 Nov 2008 (this version, v3)]
Title:Phenomenology of D-Brane Inflation with General Speed of Sound
View PDFAbstract: A characteristic of D-brane inflation is that fluctuations in the inflaton field can propagate at a speed significantly less than the speed of light. This yields observable effects that are distinct from those of single-field slow roll inflation, such as a modification of the inflationary consistency relation and a potentially large level of non-Gaussianities. We present a numerical algorithm that extends the inflationary flow formalism to models with general speed of sound. For an ensemble of D-brane inflation models parameterized by the Hubble parameter and the speed of sound as polynomial functions of the inflaton field, we give qualitative predictions for the key inflationary observables. We discuss various consistency relations for D-brane inflation, and compare the qualitative shapes of the warp factors we derive from the numerical models with analytical warp factors considered in the literature. Finally, we derive and apply a generalized microphysical bound on the inflaton field variation during brane inflation. While a large number of models are consistent with current cosmological constraints, almost all of these models violate the compactification constraint on the field range in four-dimensional Planck units. If the field range bound is to hold, then models with a detectable level of non-Gaussianity predict a blue scalar spectral index, and a tensor component that is far below the detection limit of any future experiment.
Submission history
From: Hiranya V. Peiris [view email][v1] Sat, 9 Jun 2007 05:17:18 UTC (1,129 KB)
[v2] Wed, 14 Nov 2007 22:27:07 UTC (1,130 KB)
[v3] Mon, 24 Nov 2008 18:33:13 UTC (1,130 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.