Astrophysics
[Submitted on 8 Jun 2007 (v1), last revised 18 Jun 2007 (this version, v2)]
Title:A Cosmological Framework for the Co-Evolution of Quasars, Supermassive Black Holes, and Elliptical Galaxies: I. Galaxy Mergers & Quasar Activity
View PDFAbstract: (Abridged) We develop a model for the cosmological role of mergers in the evolution of starbursts, quasars, and spheroidal galaxies. Combining halo mass functions (MFs) with empirical halo occupation models, we calculate where major galaxy-galaxy mergers occur and what kinds of galaxies merge, at all redshifts. We compare with observed merger MFs, clustering, fractions, and small-scale environments, and show that this yields robust estimates in good agreement with observations. Making the simple ansatz that major, gas-rich mergers cause quasar activity, we demonstrate that this naturally reproduces the observed rise and fall of the quasar luminosity density from z=0-6, as well as quasar LFs, fractions, host galaxy colors, and clustering as a function of redshift and luminosity. The observed excess of quasar clustering on small scales is a natural prediction of the model, as mergers preferentially occur in regions with excess small-scale galaxy overdensities. We show that quasar environments at all observed redshifts correspond closely to the empirically determined small group scale, where mergers of gas-rich galaxies are most efficient. We contrast with a secular model in which quasar activity is driven by bars/disk instabilities, and show that while these modes probably dominate at Seyfert luminosities, the constraints from clustering (large and small-scale), pseudobulge populations, disk MFs, luminosity density evolution, and host galaxy colors argue that they must be a small contributor to the z>1 quasar luminosity density.
Submission history
From: Philip Hopkins [view email][v1] Fri, 8 Jun 2007 20:05:34 UTC (677 KB)
[v2] Mon, 18 Jun 2007 22:26:36 UTC (675 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.