Mathematics > Algebraic Geometry
[Submitted on 9 Jun 2007 (v1), last revised 6 Jun 2009 (this version, v4)]
Title:Limits of PGL(3)-translates of plane curves, I
View PDFAbstract: We classify all possible limits of families of translates of a fixed, arbitrary complex plane curve. We do this by giving a set-theoretic description of the projective normal cone (PNC) of the base scheme of a natural rational map, determined by the curve, from the $P^8$ of 3x3 matrices to the $P^N$ of plane curves of degree $d$. In a sequel to this paper we determine the multiplicities of the components of the PNC. The knowledge of the PNC as a cycle is essential in our computation of the degree of the PGL(3)-orbit closure of an arbitrary plane curve, performed in our earlier paper "Linear orbits of arbitrary plane curves".
Submission history
From: Carel Faber [view email][v1] Sat, 9 Jun 2007 11:21:06 UTC (40 KB)
[v2] Mon, 16 Jul 2007 13:07:37 UTC (52 KB)
[v3] Thu, 5 Feb 2009 00:38:27 UTC (63 KB)
[v4] Sat, 6 Jun 2009 20:36:54 UTC (104 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.