Astrophysics
[Submitted on 11 Jun 2007]
Title:Fourier resolved spectroscopy of 4U 1728-34: New Insights into Spectral and Temporal Properties of Low-Mass X-ray Binaries
View PDFAbstract: Using archival RXTE data we derive the 2-16 keV Fourier-resolved spectra of the Atoll source 4U 1728-34 in a sequence of its timing states as its low QPO frequency spans the range between 6 and 94 Hz. The increase in the QPO frequency accompanies a spectral transition of the source from its island to its banana states. The banana-states' Fourier-resolved spectra are well fitted by a single blackbody component with $kT \sim 2-3$ keV depending on the source position in the color -- color diagram and the Fourier frequency, thus indicating that this spectral component is responsible for the source variability on these timescales. This result is in approximate agreement with similar behavior exhibited by the Z sources, suggesting that, as in that case, the boundary layer -- the likely source of the thermal component -- is supported by radiation pressure. Furthermore, it is found that the iron line at $\sim$6.6 keV, clearly present in the averaged spectra, not apparent within the limitations of our measurements in the frequency-resolved spectra irrespective of the frequency range. This would indicate that this spectral component exhibits little variability on time scales comprising the interval $10^{-2}-10^2$ seconds. In the island state the single blackbody model proved inadequate, particularly notable in our lowest frequency band ($0.008-0.8$ Hz). An absorbed powerlaw or an additive blackbody plus hard powerlaw model was required to obtain a satisfactory fit. Statistics do not allow unambiguous discrimination between these possible scenarios.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.