Astrophysics
[Submitted on 12 Jun 2007]
Title:The Elongated Structure of the Hercules dSph from Deep LBT Imaging
View PDFAbstract: We present a deep, wide-field photometric survey of the newly-discovered Hercules dwarf spheroidal galaxy, based on data from the Large Binocular Telescope. Images in B, V and r were obtained with the Large Binocular Camera covering a 23' times 23' field of view to a magnitude of ~25.5 (5 sigma). This permitted the construction of colour-magnitude diagrams that reach approximately 1.5 magnitudes below the Hercules main sequence turnoff. Three-filter photometry allowed us to preferentially select probable Hercules member stars, and examine the structure of this system at a previously unattained level. We find that the Hercules dwarf is highly elongated (3:1), considerably more so than any other dSph satellite of the Milky Way except the disrupting Sagittarius dwarf. While we cannot rule out that the unusual structure is intrinsic to Hercules as an equilibrium system, our results suggest tidal disruption as a likely cause of this highly elliptical structure. Given the relatively large Galactocentric distance of this system (132 +/- 12 kpc), signs of tidal disruption would require the Hercules dwarf to be on a highly eccentric orbit around the Milky Way.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.