Mathematics > Analysis of PDEs
[Submitted on 12 Jun 2007 (v1), last revised 28 Sep 2007 (this version, v2)]
Title:On a complex differential Riccati equation
View PDFAbstract: We consider a nonlinear partial differential equation for complex-valued functions which is related to the two-dimensional stationary Schrodinger equation and enjoys many properties similar to those of the ordinary differential Riccati equation as, e.g., the famous Euler theorems, the Picard theorem and others. Besides these generalizations of the classical "one-dimensional" results we discuss new features of the considered equation like, e.g., an analogue of the Cauchy integral theorem.
Submission history
From: Vladislav V. Kravchenko [view email][v1] Tue, 12 Jun 2007 16:51:18 UTC (9 KB)
[v2] Fri, 28 Sep 2007 19:15:08 UTC (10 KB)
Current browse context:
math.AP
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.