Astrophysics
[Submitted on 12 Jun 2007]
Title:X-ray Luminosity Functions of Normal Galaxies in the GOODS
View PDFAbstract: We present soft (0.5-2 keV) X-ray luminosity functions (XLFs) in the Great Observatories Origins Deep Survey (GOODS) fields, derived for galaxies at z~0.25 and 0.75. SED fitting was used to estimate photometric redshifts and separate galaxy types, resulting in a sample of 40 early-type galaxies and 46 late-type galaxies. We estimate k-corrections for both the X-ray/optical and X-ray/NIR flux ratios, which facilitates the separation of AGN from the normal/starburst galaxies. We fit the XLFs with a power-law model using both traditional and Markov-Chain Monte Carlo (MCMC) procedures. The XLFs differ between z<0.5 and z>0.5, at >99% significance levels for early-type, late-type and all (early and late-type) this http URL also fit Schechter and log-normal models to the XLFs, fitting the low and high redshift XLFs for a given sample simultaneously assuming only pure luminosity evolution. In the case of log-normal fits, the results of MCMC fitting of the local FIR luminosity function were used as priors for the faint and bright-end slopes (similar to ``fixing'' these parameters at the FIR values except here the FIR uncertainty is included). The best-fit values of the change in log L* with redshift were dlogL* = 0.23 +/- 0.16 dex (for early-type galaxies) and 0.34 +/- 0.12 dex (for late-type galaxies), corresponding to (1+z)^1.6 and (1+z)^2.3. These results were insensitive to whether the Schechter or log-normal function was adopted.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.