Astrophysics
[Submitted on 13 Jun 2007]
Title:Near-infrared Study of the Carina Nebula
View PDFAbstract: We have carried out near-infrared (NIR) imaging observations of the Carina Nebula for an area of ~400 sq. arcmin. including the star clusters Trumpler 14 (Tr 14) and Trumpler 16 (Tr 16). With 10 sigma limiting magnitudes of J ~ 18.5, H ~ 17.5 and K_s ~ 16.5, we identified 544 Class II and 11 Class I young star candidates. We find some 40 previously unknown very red sources with H-K_s > 2, most of which remain undetected at the J band. The red NIR sources are found to be concentrated to the south-east of Tr 16, along the `V' shaped dust lane, where the next generation of stars seems to be forming. In addition, we find indications of ongoing star formation near the three MSX point sources, G287.51-0.49, G287.47-0.54, and G287.63-0.72. A handful of red NIR sources are seen to populate around each of these MSX sources. Apart from this, we identified two hard Chandra X-ray sources near G287.47-0.54, one of which does not have an NIR counterpart and may be associated with a Class I/Class 0 object. The majority of the Class II candidates, on the other hand, are seen to be distributed in the directions of the clusters, demarcating different evolutionary stages in this massive star-forming region. A comparison of the color-magnitude diagrams of the clusters with pre-main sequence model tracks shows that the stellar population of these clusters is very young (< 3 Myr). The K_s band luminosity function (KLF) of Tr 14 shows structure at the faint end, including a sharp peak due to the onset of deuterium burning, implying an age of 1-2 Myr for the cluster. The KLF of Tr 16, in contrast, is found to rise smoothly until it turns over. The slopes of the mass functions derived for the clusters are found to be in agreement with the canonical value of the field star initial mass function derived by Salpeter.
Submission history
From: Kaushar Sanchawala [view email][v1] Wed, 13 Jun 2007 14:54:58 UTC (582 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.