Astrophysics
[Submitted on 13 Jun 2007]
Title:Nonlinear turbulent magnetic diffusion and effective drift velocity of large-scale magnetic field in a two-dimensional magnetohydrodynamic turbulence
View PDFAbstract: We study a nonlinear quenching of turbulent magnetic diffusion and effective drift velocity of large-scale magnetic field in a developed two-dimensional MHD turbulence at large magnetic Reynolds numbers. We show that transport of the mean-square magnetic potential strongly changes quenching of turbulent magnetic diffusion. In particularly, the catastrophic quenching of turbulent magnetic diffusion does not occur for the large-scale magnetic fields $B \gg B_{\rm eq} / \sqrt{\rm Rm}$ when a divergence of the flux of the mean-square magnetic potential is not zero, where $B_{\rm eq}$ is the equipartition mean magnetic field determined by the turbulent kinetic energy and Rm is the magnetic Reynolds number. In this case the quenching of turbulent magnetic diffusion is independent of magnetic Reynolds number. The situation is similar to three-dimensional MHD turbulence at large magnetic Reynolds numbers whereby the catastrophic quenching of the alpha effect does not occur when a divergence of the flux of the small-scale magnetic helicity is not zero.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.