Astrophysics
[Submitted on 14 Jun 2007]
Title:IRAS08281-4850 and IRAS14325-6428: two A-type post-AGB stars with s-process enrichment
View PDFAbstract: One of the puzzling findings in the study of the chemical evolution of (post-)AGB stars is why very similar stars (in terms of metallicity, spectral type, infrared properties, etc...) show a very different photospheric composition. We aim at extending the still limited sample of s-process enriched post-AGB stars, in order to obtain a statistically large enough sample that allows us to formulate conclusions concerning the 3rd dredge-up occurrence. We selected two post-AGB stars on the basis of IR colours indicative of a past history of heavy mass loss: IRAS08281-4850 and IRAS14325-6428. They are cool sources in the locus of the Planetary Nebulae (PNe) in the IRAS colour-colour diagram. Abundances of both objects were derived for the first time on the basis of high-quality UVES and EMMI spectra, using a critically compiled line list with accurate log(gf) values, together with the latest Kurucz model atmospheres. Both objects have very similar spectroscopically defined effective temperatures of 7750-8000K. They are strongly carbon and s-process enriched, with a C/O ratio of 1.9 and 1.6, and an [ls/Fe] of +1.7 and +1.2, for IRAS08281 and IRAS14325 resp. Moreover, the spectral energy distributions (SEDs) point to heavy mass-loss during the preceding AGB phase. IRAS08281 and IRAS14325 are prototypical post-AGB objects in the sense that they show strong post 3rd dredge-up chemical enrichments. The neutron irradiation has been extremely efficient, despite the only mild sub-solar metallicity. This is not conform with the recent chemical models. The existence of very similar post-AGB stars without any enrichment emphasizes our poor knowledge of the details of the AGB nucleosynthesis and dredge-up phenomena. We call for a very systematic chemical study of all cool sources in the PN region of the IRAS colour-colour diagram.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.