Astrophysics
[Submitted on 18 Jun 2007]
Title:The Blackholic energy and the canonical Gamma-Ray Burst
View PDFAbstract: We outline the main results of our GRB model, based on the three interpretation paradigms we proposed in July 2001, comparing and contrasting them with the ones in the current literature. Thanks to the observations by Swift and by VLT, this analysis points to a "canonical GRB" originating from markedly different astrophysical scenarios. The communality is that they are all emitted in the formation of a black hole with small or null angular momentum. The following sequence appears to be canonical: the vacuum polarization process creating an optically thick self accelerating electron-positron plasma; the engulfment of baryonic mass during the plasma expansion; the adiabatic expansion of the optically thick "fireshell" up to the transparency; the interaction of the remaining accelerated baryons with the interstellar medium (ISM). This leads to the canonical GRB composed of a proper GRB (P-GRB), emitted at the moment of transparency, followed by an extended afterglow. The parameters are the plasma total energy, the fireshell baryon loading and the ISM filamentary distribution around the source. In the limit of no baryon loading the total energy is radiated in the P-GRB. In this limit, the canonical GRBs explain as well the short GRBs.
Submission history
From: Carlo Luciano Bianco [view email][v1] Mon, 18 Jun 2007 14:18:09 UTC (2,107 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.