Astrophysics
[Submitted on 18 Jun 2007 (v1), last revised 29 Nov 2007 (this version, v2)]
Title:Using the Zeldovich dynamics to test expansion schemes
View PDFAbstract: We apply various expansion schemes that may be used to study gravitational clustering to the simple case of the Zeldovich dynamics. Using the well-known exact solution of the Zeldovich dynamics we can compare the predictions of these various perturbative methods with the exact nonlinear result and study their convergence properties. We find that most systematic expansions fail to recover the decay of the response function in the highly nonlinear regime. ``Linear methods'' lead to increasingly fast growth in the nonlinear regime for higher orders, except for Pade approximants that give a bounded response at any order. ``Nonlinear methods'' manage to obtain some damping at one-loop order but they fail at higher orders. Although it recovers the exact Gaussian damping, a resummation in the high-k limit is not justified very well as the generation of nonlinear power does not originate from a finite range of wavenumbers (hence there is no simple separation of scales). No method is able to recover the relaxation of the matter power spectrum on highly nonlinear scales. It is possible to impose a Gaussian cutoff in a somewhat ad-hoc fashion to reproduce the behavior of the exact two-point functions for two different times. However, this cutoff is not directly related to the clustering of matter and disappears in exact equal-time statistics such as the matter power spectrum. On a quantitative level, the usual perturbation theory, and the nonlinear scheme to which one adds an ansatz for the response function with such a Gaussian cutoff, are the two most efficient methods. These results should hold for the gravitational dynamics as well (this has been checked at one-loop order), since the structure of the equations of motion is identical for both dynamics.
Submission history
From: Patrick Valageas [view email][v1] Mon, 18 Jun 2007 12:56:55 UTC (116 KB)
[v2] Thu, 29 Nov 2007 13:45:30 UTC (125 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.