Mathematics > Probability
[Submitted on 19 Jun 2007]
Title:Scaled entropy of filtrations of $σ$-fields
View PDFAbstract: We study the notion of the scaled entropy of a filtration of $\sigma$-fields (= decreasing sequence of $\sigma$-fields) introduced by the first author ({V4}). We suggest a method for computing this entropy for the sequence of $\sigma$-fields of pasts of a Markov process determined by a random walk over the trajectories of a Bernoulli action of a commutative or nilpotent countable group (Theorems~5,~6). Since the scaled entropy is a metric invariant of the filtration, it follows that the sequences of $\sigma$-fields of pasts of random walks over the trajectories of Bernoulli actions of lattices (groups ${\Bbb Z}^d$) are metrically nonisomorphic for different dimensions $d$, and for the same $d$ but different values of the entropy of the Bernoulli scheme. We give a brief survey of the metric theory of filtrations, in particular, formulate the standardness criterion and describe its connections with the scaled entropy and the notion of a tower of measures.
Current browse context:
math.PR
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.