Astrophysics
[Submitted on 19 Jun 2007]
Title:Evidence for Growth of Eccentricity and Mass Clearing in a Disc Interior to a Planet
View PDFAbstract: We present computational results showing eccentricity growth in the inner portions of a protoplanetary disc. We attribute this to the evolving surface density of the disc. The planet creates a gap, which adjusts the balance between the 3:1 (eccentricity exciting) and 2:1 (eccentricity damping) resonances. The eccentricity of the inner disc can rise as high as 0.3, which is sufficient to cause it to be accreted onto the star. This offers an alternative mechanism for producing the large holes observed in the discs of CoKu Tau/4, GM Aur and DM Tau.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.