Astrophysics
[Submitted on 19 Jun 2007]
Title:Progressive transformation of a flux rope to an ICME
View PDFAbstract: The solar wind conditions at one astronomical unit (AU) can be strongly disturbed by the interplanetary coronal mass ejections (ICMEs). A subset, called magnetic clouds (MCs), is formed by twisted flux ropes that transport an important amount of magnetic flux and helicity which is released in CMEs. At 1 AU from the Sun, the magnetic structure of MCs is generally modeled neglecting their expansion during the spacecraft crossing. However, in some cases, MCs present a significant expansion. We present here an analysis of the huge and significantly expanding MC observed by the Wind spacecraft during 9 and 10 November, 2004. After determining an approximated orientation for the flux rope using the minimum variance method, we precise the orientation of the cloud axis relating its front and rear magnetic discontinuities using a direct method. This method takes into account the conservation of the azimuthal magnetic flux between the in- and out-bound branches, and is valid for a finite impact parameter (i.e., not necessarily a small distance between the spacecraft trajectory and the cloud axis). Moreover, using the direct method, we find that the ICME is formed by a flux rope (MC) followed by an extended coherent magnetic region. These observations are interpreted considering the existence of a previous larger flux rope, which partially reconnected with its environment in the front. These findings imply that the ejected flux rope is progressively peeled by reconnection and transformed to the observed ICME (with a remnant flux rope in the front part).
Submission history
From: Sergio Dasso Dr. [view email][v1] Tue, 19 Jun 2007 23:08:34 UTC (1,770 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.