Astrophysics
[Submitted on 20 Jun 2007 (v1), last revised 4 Apr 2008 (this version, v2)]
Title:The formation of the [alpha/Fe] radial gradients in the stars of elliptical galaxies
View PDFAbstract: The scope of this paper is two-fold: i) to test and improve our previous models of an outside-in formation for the majority of ellipticals in the context of the SN-driven wind scenario, by means of a careful study of gas inflows/outflows; ii) to explain the observed slopes, either positive or negative, in the radial gradient of the mean stellar [alpha/Fe], and their apparent lack of any correlation with all the other observables. In order to pursue these goals we present a new class of hydrodynamical simulations for the formation of single elliptical galaxies in which we implement detailed prescriptions for the chemical evolution of H, He, O and Fe. We find that all the models which predict chemical properties (such as the central mass-weighted abundance ratios, the colours as well as the [<Fe/H>] gradient) within the observed ranges for a typical elliptical, also exhibit a variety of gradients in the [<alpha/Fe>] ratio, in agreement with the observations (namely positive, null or negative). All these models undergo an outside-in formation, in the sense that star formation stops earlier in the outermost than in the innermost regions, owing to the onset of a galactic wind. The typical [<Z/H>] gradients predicted by our models have a slope of -0.3 dex per decade variation in radius, consistent with the mean values of several observational samples. We can safely conclude that the history of star formation is fundamental for the creation of abundance gradients in ellipticals but that radial flows with different velocity in conjunction with the duration and efficiency of star formation in different galactic regions are responsible for the gradients in the [<alpha/Fe>] ratios.
Submission history
From: Antonio Pipino [view email][v1] Wed, 20 Jun 2007 08:03:49 UTC (239 KB)
[v2] Fri, 4 Apr 2008 19:29:34 UTC (222 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.