Astrophysics
[Submitted on 20 Jun 2007]
Title:A Comparative Study of Optical and Ultraviolet Effective Temperatures for DA White Dwarfs from the IUE Archive
View PDFAbstract: We present a comparative study of effective temperatures determined from the hydrogen Balmer lines and from the UV energy distribution for 140 DA white dwarfs drawn from the IUE archive. Our results indicate that the optical and UV temperatures of the majority of stars below T~40,000 K and within ~75 pc are in fairly good agreement given the uncertainties. At higher temperatures and/or larger distances, however, significant discrepancies are observed. Several mechanisms are investigated to account for these discrepancies including the effect of interstellar reddening, the presence of metals in the photosphere, and the existence of unresolved binary white dwarfs. The results of our analysis reveal that wavelength-dependent extinction is the most natural explanation for the observed temperature differences. We also attempt to predict the differences in optical and UV temperatures expected from unresolved degenerate binaries by performing an exhaustive simulation of composite model spectra. In light of these simulations, we then discuss some known double degenerates and identify new binary candidates by restricting our analysis to stars located within 75 pc where the effect of interstellar reddening is significantly reduced.
Submission history
From: Charles-Philippe Lajoie [view email][v1] Wed, 20 Jun 2007 17:35:29 UTC (398 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.