High Energy Physics - Theory
[Submitted on 21 Jun 2007 (v1), last revised 15 Jul 2007 (this version, v2)]
Title:Triadophilia: A Special Corner in the Landscape
View PDFAbstract: It is well known that there are a great many apparently consistent vacua of string theory. We draw attention to the fact that there appear to be very few Calabi--Yau manifolds with the Hodge numbers h^{11} and h^{21} both small. Of these, the case (h^{11}, h^{21})=(3,3) corresponds to a manifold on which a three generation heterotic model has recently been constructed. We point out also that there is a very close relation between this manifold and several familiar manifolds including the `three-generation' manifolds with \chi=-6 that were found by Tian and Yau, and by Schimmrigk, during early investigations. It is an intriguing possibility that we may live in a naturally defined corner of the landscape. The location of these three generation models with respect to a corner of the landscape is so striking that we are led to consider the possibility of transitions between heterotic vacua. The possibility of these transitions, that we here refer to as transgressions, is an old idea that goes back to Witten. Here we apply this idea to connect three generation vacua on different Calabi-Yau manifolds.
Submission history
From: Philip Candelas [view email][v1] Thu, 21 Jun 2007 08:53:15 UTC (292 KB)
[v2] Sun, 15 Jul 2007 15:53:16 UTC (334 KB)
Current browse context:
hep-th
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.