High Energy Physics - Theory
[Submitted on 26 Jun 2007 (v1), last revised 22 Aug 2007 (this version, v2)]
Title:On the Initial Conditions in New Ekpyrotic Cosmology
View PDFAbstract: New Ekpyrotic Cosmology is an alternative scenario of early universe cosmology in which the universe existed before the big bang. The simplest model relies on two scalar fields, whose entropy perturbation leads to a scale-invariant spectrum of density fluctuations. The ekpyrotic solution has a tachyonic instability along the entropy field direction which, a priori, appears to require fine-tuning of the initial conditions. In this paper, we show that these can be achieved naturally by adding a small positive mass term for the tachyonic field and coupling to light fermions. Then, for a wide range of initial conditions, the tachyonic field gets stabilized with the appropriate values well before the onset of the ekpyrotic phase. Furthermore, we show that ekpyrotic theory is successful in solving the flatness, horizon and homogeneity problems of standard big bang cosmology. Motivated by the analysis of the tachyonic instability, we propose a simplification of the model in terms of new field variables. Instead of requiring two exponential potentials, one for each scalar field, it suffices to consider a single nearly exponential potential for one of the fields and a tachyonic mass term along the orthogonal direction in field space. All other terms in the potential are essentially arbitrary. This greatly widens the class of ekpyrotic potentials and allows substantial freedom in determining the spectral index and possible non-Gaussianity. We present a generalized expression for the spectral index which is easily consistent with the observed red tilt. We also argue that for a wide range of potentials non-Gaussianity can be substantial, within the reach of current observations.
Submission history
From: Justin Khoury [view email][v1] Tue, 26 Jun 2007 20:14:56 UTC (259 KB)
[v2] Wed, 22 Aug 2007 21:40:26 UTC (259 KB)
Current browse context:
hep-th
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.