Astrophysics
[Submitted on 27 Jun 2007]
Title:New Constraints on the Lyman Continuum Escape Fraction at z~1.3
View PDFAbstract: We examine deep far-ultraviolet (1600 Angstrom) imaging of the Hubble Deep Field-North (HDFN) and the Hubble Ultra Deep Field (HUDF) to search for leaking Lyman continuum radiation from starburst galaxies at z~1.3. There are 21 (primarily sub-L*) galaxies with spectroscopic redshifts between 1.1<z<1.5 and none are detected in the far-UV. We fit stellar population templates to the galaxies' optical/near-infrared SEDs to determine the starburst age and level of dust attenuation, giving an accurate estimate of the intrinsic Lyman continuum ratio, f_1500/f_700, and allowing a conversion from f_700 limits to relative escape fractions. We show that previous high-redshift studies may have underestimated the amplitude of the Lyman Break, and thus the relative escape fraction, by a factor of ~2. Once the starburst age and intergalactic HI absorption are accounted for, 18 galaxies in our sample have limits to the relative escape fraction, f_esc,rel < 1.0 with some limits as low as f_esc,rel < 0.10 and a stacked limit of f_esc,rel < 0.08. This demonstrates, for the first time, that most sub-L* galaxies at high redshift do not have large escape fractions. When combined with a similar study of more luminous galaxies at the same redshift we show that, if all star-forming galaxies at z~1 have similar relative escape fractions, the value must be less than 0.14 (3 sigma). We also show that less than 20% (3 sigma) of star-forming galaxies at z~1 have relative escape fractions near unity. These limits contrast with the large escape fractions found at z~3 and suggest that the average escape fraction has decreased between z~3 and z~1. (Abridged)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.