Astrophysics
[Submitted on 28 Jun 2007]
Title:Interacting Binaries with Eccentric Orbits. Secular Orbital Evolution Due To Conservative Mass Transfer
View PDFAbstract: We investigate the secular evolution of the orbital semi-major axis and eccentricity due to mass transfer in eccentric binaries, assuming conservation of total system mass and orbital angular momentum. Assuming a delta function mass transfer rate centered at periastron, we find rates of secular change of the orbital semi-major axis and eccentricity which are linearly proportional to the magnitude of the mass transfer rate at periastron. The rates can be positive as well as negative, so that the semi-major axis and eccentricity can increase as well as decrease in time. Adopting a delta-function mass-transfer rate of $10^{-9} M_\sun {\rm yr}^{-1}$ at periastron yields orbital evolution timescales ranging from a few Myr to a Hubble time or more, depending on the binary mass ratio and orbital eccentricity. Comparison with orbital evolution timescales due to dissipative tides furthermore shows that tides cannot, in all cases, circularize the orbit rapidly enough to justify the often adopted assumption of instantaneous circularization at the onset of mass transfer. The formalism presented can be incorporated in binary evolution and population synthesis codes to create a self-consistent treatment of mass transfer in eccentric binaries.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.