Mathematics > Statistics Theory
[Submitted on 1 Aug 2007]
Title:Semiparametrically efficient rank-based inference for shape II. Optimal R-estimation of shape
View PDFAbstract: A class of R-estimators based on the concepts of multivariate signed ranks and the optimal rank-based tests developed in Hallin and Paindaveine [Ann. Statist. 34 (2006)] is proposed for the estimation of the shape matrix of an elliptical distribution. These R-estimators are root-n consistent under any radial density g, without any moment assumptions, and semiparametrically efficient at some prespecified density f. When based on normal scores, they are uniformly more efficient than the traditional normal-theory estimator based on empirical covariance matrices (the asymptotic normality of which, moreover, requires finite moments of order four), irrespective of the actual underlying elliptical density. They rely on an original rank-based version of Le Cam's one-step methodology which avoids the unpleasant nonparametric estimation of cross-information quantities that is generally required in the context of R-estimation. Although they are not strictly affine-equivariant, they are shown to be equivariant in a weak asymptotic sense. Simulations confirm their feasibility and excellent finite-sample performances.
Submission history
From: Davy Paindaveine [view email] [via VTEX proxy][v1] Wed, 1 Aug 2007 06:57:43 UTC (144 KB)
Current browse context:
math.ST
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.