Astrophysics
[Submitted on 1 Aug 2007 (v1), last revised 16 Jul 2008 (this version, v2)]
Title:On the Density Dependent Nuclear Matter Compressibility
View PDFAbstract: In the present work we apply a quantum hadrodynamic effective model in the mean-field approximation to the description of neutron stars. We consider an adjustable derivative-coupling model and study the parameter influence on the dynamics of the system by analyzing the full range of values they can take. We establish a set of parameters which define a specific model that is able to describe phenomenological properties such as the effective nucleon mass at saturation as well as global static properties of neutron stars (mass and radius). If one uses observational data to fix the maximum mass for neutron stars by a specific model, we are able to predict the compression modulus of nuclear matter K = 257,2MeV.
Submission history
From: Veronica Dexheimer [view email][v1] Wed, 1 Aug 2007 11:25:54 UTC (153 KB)
[v2] Wed, 16 Jul 2008 12:15:36 UTC (146 KB)
Current browse context:
astro-ph
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.