Mathematics > Statistics Theory
[Submitted on 3 Aug 2007]
Title:Nonparametric estimation in a nonlinear cointegration type model
View PDFAbstract: We derive an asymptotic theory of nonparametric estimation for a time series regression model $Z_t=f(X_t)+W_t$, where \ensuremath\{X_t\} and \ensuremath\{Z_t\} are observed nonstationary processes and $\{W_t\}$ is an unobserved stationary process. In econometrics, this can be interpreted as a nonlinear cointegration type relationship, but we believe that our results are of wider interest. The class of nonstationary processes allowed for $\{X_t\}$ is a subclass of the class of null recurrent Markov chains. This subclass contains random walk, unit root processes and nonlinear processes. We derive the asymptotics of a nonparametric estimate of f(x) under the assumption that $\{W_t\}$ is a Markov chain satisfying some mixing conditions. The finite-sample properties of $\hat{f}(x)$ are studied by means of simulation experiments.
Submission history
From: Dag Tjøstheim [view email] [via VTEX proxy][v1] Fri, 3 Aug 2007 12:11:49 UTC (218 KB)
Current browse context:
math.ST
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.