Astrophysics
[Submitted on 30 Aug 2007]
Title:Chemical evolution of neutron capture elements in our Galaxy and in the dwarf spheroidal galaxies of the Local Group
View PDFAbstract: By adopting a chemical evolution model for the Milky Way already reproducing the evolution of several chemical elements, we compare our theoretical results with accurate and new stellar data of neutron capture elements and we are able to impose strong constraints on the nucleosynthesis of the studied elements. We can suggest the stellar sites of production for each element. In particular, the r-process component of each element (if any) is produced in the mass range from 10 to 30 Msun, whereas the s-process component arises from stars in the range from 1 to 3 Msun. Using the same chemical evolution model, extended to different galactocentric distances, we obtain results on the radial gradients of the Milky Way. We compare the results of the model not only for the neutron capture elements but also for alpha-elements and iron peak elements with new data of Cepheids stars. We give a possible explanation to the considerable scatter of neutron capture elements observed in low metallicity stars in the solar vicinity, compared to the small star to star scatter observed for the alpha-elements. In fact, we have developed a stochastic chemical evolution model, in which the main assumption is a random formation of new stars, subject to the condition that the cumulative mass distribution follows a given initial mass function. With our model we are able to reproduce the different features of neutron capture elements and alpha-elements. Finally, we test the prescriptions for neutron capture elements also for the dwarf spheroidal galaxies of the Local Group. We predict that the chemical evolution of these elements in dwarf spheroidal galaxies is different from the evolution in the solar vicinity and indicates that dwarf spheroidal galaxies (we see nowadays) cannot be the building blocks of our Galaxy.
Submission history
From: Gabriele Cescutti [view email][v1] Thu, 30 Aug 2007 13:56:34 UTC (1,140 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.