Astrophysics
[Submitted on 30 Aug 2007 (v1), last revised 15 Oct 2007 (this version, v2)]
Title:Discovery of new nearby L and late-M dwarfs at low Galactic latitude from the DENIS database
View PDFAbstract: We report new nearby L and late-M dwarfs (d_phot <= 30 pc) discovered in our search for nearby ultracool dwarfs (I-J >= 3.0, later than M8.0) at low Galactic latitude (|b| < 15 degr) over 4,800 square degrees in the DENIS database. We used late-M (>=M8.0), L, and T dwarfs with accurate trigonometric parallaxes to calibrate the M_J versus I-J colour-luminosity relation. The resulting photometric distances have standard errors of ~15%, which we used to select candidates d_phot <= 30 pc. We measured proper motions from multi-epoch images found in the public archives ALADIN, DSS, 2MASS, DENIS, with at least three distinct epochs and time baselines of 10 to 21 years. We then used a Maximum Reduced Proper Motion cutoff to select 28 candidates as ultracool dwarfs (M8.0--L8.0) and to reject one as a distant red star. No T dwarf candidates were found in this search which required an object to be detected in all three DENIS bands. Our low-resolution optical spectra confirmed that 26 of them were indeed ultracool dwarfs, with spectral types from M8.0 to L5.5. Two contaminants and one rejected by the Maximum Reduced Proper Motion cutoff were all reddened F-K main sequence stars. 20 of these 26 ultracool dwarfs are new nearby ultracool dwarf members, three L dwarfs within 15 pc with one L3.5 at only ~10 pc. We determine a stellar density of \bar{\Phi}_J cor=(1.64 +- 0.46).10^{-3} dwarfs pc^{-3} mag^{-1} over 11.1 <= M_J <= 13.1 based on that sample of M8--L3.5 ultracool dwarfs. Our ultracool dwarf density value is in good agreement with the Cruz et al. measurement of the ultracool dwarf density at high Galactic latitude.
Submission history
From: Ngoc Phan-Bao [view email][v1] Thu, 30 Aug 2007 14:30:16 UTC (203 KB)
[v2] Mon, 15 Oct 2007 09:12:10 UTC (193 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.