Mathematics > Geometric Topology
[Submitted on 1 Oct 2007 (v1), last revised 2 Oct 2007 (this version, v2)]
Title:On Floer homology and the Berge conjecture on knots admitting lens space surgeries
View PDFAbstract: We complete the first step in a two-part program proposed by Baker, Grigsby, and the author to prove that Berge's construction of knots in the three-sphere which admit lens space surgeries is complete. The first step, which we prove here, is to show that a knot in a lens space with a three-sphere surgery has simple (in the sense of rank) knot Floer homology. The second (conjectured) step involves showing that, for a fixed lens space, the only knots with simple Floer homology belong to a simple finite family. Using results of Baker, we provide evidence for the conjectural part of the program by showing that it holds for a certain family of knots. Coupled with work of Ni, these knots provide the first infinite family of non-trivial knots which are characterized by their knot Floer homology. As another application, we provide a Floer homology proof of a theorem of Berge.
Submission history
From: Matthew Hedden [view email][v1] Mon, 1 Oct 2007 18:53:10 UTC (60 KB)
[v2] Tue, 2 Oct 2007 18:50:12 UTC (49 KB)
Current browse context:
math.GT
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.