Computer Science > Information Theory
[Submitted on 2 Oct 2007]
Title:TP Decoding
View PDFAbstract: `Tree pruning' (TP) is an algorithm for probabilistic inference on binary Markov random fields. It has been recently derived by Dror Weitz and used to construct the first fully polynomial approximation scheme for counting independent sets up to the `tree uniqueness threshold.' It can be regarded as a clever method for pruning the belief propagation computation tree, in such a way to exactly account for the effect of loops.
In this paper we generalize the original algorithm to make it suitable for decoding linear codes, and discuss various schemes for pruning the computation tree. Further, we present the outcomes of numerical simulations on several linear codes, showing that tree pruning allows to interpolate continuously between belief propagation and maximum a posteriori decoding. Finally, we discuss theoretical implications of the new method.
Current browse context:
cs.IT
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.