Mathematics > Differential Geometry
[Submitted on 5 Oct 2007]
Title:A Canonical Quadratic Form on the Determinant Line of a Flat Vector Bundle
View PDFAbstract: We introduce and study a canonical quadratic form, called the torsion quadratic form, of the determinant line of a flat vector bundle over a closed oriented odd-dimensional manifold. This quadratic form caries less information than the refined analytic torsion, introduced in our previous work, but is easier to construct and closer related to the combinatorial Farber-Turaev torsion. In fact, the torsion quadratic form can be viewed as an analytic analogue of the Poincare-Reidemeister scalar product, introduced by Farber and Turaev. Moreover, it is also closely related to the complex analytic torsion defined by Cappell and Miller and we establish the precise relationship between the two. In addition, we show that up to an explicit factor, which depends on the Euler structure, and a sign the Burghelea-Haller complex analytic torsion, whenever it is defined, is equal to our quadratic form. We conjecture a formula for the value of the torsion quadratic form at the Farber-Turaev torsion and prove some weak version of this conjecture. As an application we establish a relationship between the Cappell-Miller and the combinatorial torsions.
Current browse context:
math.DG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.