Mathematics > Differential Geometry
[Submitted on 5 Oct 2007 (v1), last revised 8 Oct 2007 (this version, v2)]
Title:Riemannian groupoids and solitons for three-dimensional homogeneous Ricci and cross curvature flows
View PDFAbstract: In this paper we investigate the behavior of three-dimensional homogeneous solutions of the cross curvature flow using Riemannian groupoids. The Riemannian groupoid technique, introduced by John Lott, allows us to investigate the long term behavior of collapsing solutions of the flow, producing soliton solutions in the limit. We also review Lott's results on the long term behavior of three-dimensional homogeneous solutions of Ricci flow, demonstrating the coordinates we choose and reviewing the groupoid technique. We find cross curvature soliton metrics on Sol and Nil, and show that the cross curvature flow of SL(2,R) limits to Sol.
Submission history
From: David Glickenstein [view email][v1] Fri, 5 Oct 2007 17:42:07 UTC (38 KB)
[v2] Mon, 8 Oct 2007 17:23:24 UTC (38 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.