Mathematics > Numerical Analysis
[Submitted on 14 Oct 2007]
Title:Adaptive Directional Subdivision Schemes and Shearlet Multiresolution Analysis
View PDFAbstract: In this paper, we propose a solution for a fundamental problem in computational harmonic analysis, namely, the construction of a multiresolution analysis with directional components. We will do so by constructing subdivision schemes which provide a means to incorporate directionality into the data and thus the limit function. We develop a new type of non-stationary bivariate subdivision schemes, which allow to adapt the subdivision process depending on directionality constraints during its performance, and we derive a complete characterization of those masks for which these adaptive directional subdivision schemes converge. In addition, we present several numerical examples to illustrate how this scheme works. Secondly, we describe a fast decomposition associated with a sparse directional representation system for two dimensional data, where we focus on the recently introduced sparse directional representation system of shearlets. In fact, we show that the introduced adaptive directional subdivision schemes can be used as a framework for deriving a shearlet multiresolution analysis with finitely supported filters, thereby leading to a fast shearlet decomposition.
Current browse context:
math.NA
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.