Mathematics > Representation Theory
[Submitted on 15 Oct 2007]
Title:Rhombus Filtrations and Rauzy Algebras
View PDFAbstract: Peach introduced rhombal algebras associated to quivers given by tilings of the plane by rhombi. We develop general techniques to analyse rhombal algebras, including a filtration by what we call rhombus modules.
We introduce a way to relate the infinite-dimensional rhombal algebra corresponding to a complete tiling of the plane to finite-dimensional algebras corresponding to finite portions of the tiling. Throughout, we apply our general techniques to the special case of the Rauzy tiling, which is built in stages reflecting an underlying self-similarity. Exploiting this self-similar structure allows us to uncover interesting features of the associated finite-dimensional algebras, including some of the tree classes in the stable Auslander-Reiten quiver.
Current browse context:
math.RT
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.