Mathematics > Statistics Theory
[Submitted on 17 Oct 2007]
Title:Dependency and false discovery rate: Asymptotics
View PDFAbstract: Some effort has been undertaken over the last decade to provide conditions for the control of the false discovery rate by the linear step-up procedure (LSU) for testing $n$ hypotheses when test statistics are dependent. In this paper we investigate the expected error rate (EER) and the false discovery rate (FDR) in some extreme parameter configurations when $n$ tends to infinity for test statistics being exchangeable under null hypotheses. All results are derived in terms of $p$-values. In a general setup we present a series of results concerning the interrelation of Simes' rejection curve and the (limiting) empirical distribution function of the $p$-values. Main objects under investigation are largest (limiting) crossing points between these functions, which play a key role in deriving explicit formulas for EER and FDR. As specific examples we investigate equi-correlated normal and $t$-variables in more detail and compute the limiting EER and FDR theoretically and numerically. A surprising limit behavior occurs if these models tend to independence.
Submission history
From: Helmut Finner [view email] [via VTEX proxy][v1] Wed, 17 Oct 2007 13:48:17 UTC (189 KB)
Current browse context:
math.ST
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.