Mathematics > Analysis of PDEs
[Submitted on 20 Oct 2007]
Title:The WKB method for conjugate points in the volumorphism group
View PDFAbstract: In this paper, we are interested in the location of conjugate points along a geodesic in the volumorphism group of a compact three-dimensional manifold without boundary (the configuration space of an ideal fluid). As shown in the author's previous work, these are typically pathological, i.e., they can occur in clusters along a geodesic, unlike on finite-dimensional Riemannian manifolds. (This phenomenon does not occur for the volumorphism groups of two-dimensional manifolds, which are known to have discrete conjugate points along any geodesic by Ebin-Misiolek-Preston.) We give an explicit algorithm for finding them in terms of a certain ordinary differential equation, derived via the WKB-approximation methods of Lifschitz-Hameiri and Friedlander-Vishik. We prove that for a typical geodesic in the volumorphism group, there will be pathological conjugate point locations filling up closed intervals; hence typically the zeroes of Jacobi fields on the volumorphism group are dense in intervals.
Current browse context:
math.AP
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.