Mathematics > Analysis of PDEs
[Submitted on 24 Oct 2007]
Title:Solution and Asymptotic Behavior for a Nonlocal Coupled System of Reaction-Diffusion
View PDFAbstract: This paper concerns with existence, uniqueness and asymptotic behavior of the solutions for a nonlocal coupled system of reaction-diffusion. We prove the existence and uniqueness of weak solutions by the Faedo-Galerkin method and exponential decay of solutions by the classic energy method. We improve the results obtained by Chipot-Lovato and Menezes for coupled systems. A numerical scheme is presented.
Submission history
From: Mauricio Sepulveda [view email] [via CCSD proxy][v1] Wed, 24 Oct 2007 06:39:57 UTC (94 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.