Mathematics > Differential Geometry
[Submitted on 30 Oct 2007 (v1), last revised 15 Sep 2008 (this version, v2)]
Title:Tight homomorphisms and Hermitian symmetric spaces
View PDFAbstract: We introduce the notion of tight homomorphism into a locally compact group with nonvanishing bounded cohomology and study these homomorphisms in detail when the target is a Lie group of Hermitian type. Tight homomorphisms between Lie groups of Hermitian type give rise to tight totally geodesic maps of Hermitian symmetric spaces. We show that tight maps behave in a functorial way with respect to the Shilov boundary and use this to prove a general structure theorem for tight homomorphisms. Furthermore we classify all tight embeddings of the Poincare' disk.
Submission history
From: Alessandra Iozzi [view email][v1] Tue, 30 Oct 2007 13:27:56 UTC (51 KB)
[v2] Mon, 15 Sep 2008 12:00:33 UTC (63 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.