Mathematics > Statistics Theory
[Submitted on 31 Oct 2007 (v1), last revised 27 Jun 2008 (this version, v2)]
Title:The distribution of maxima of approximately Gaussian random fields
View PDFAbstract: Motivated by the problem of testing for the existence of a signal of known parametric structure and unknown ``location'' (as explained below) against a noisy background, we obtain for the maximum of a centered, smooth random field an approximation for the tail of the distribution. For the motivating class of problems this gives approximately the significance level of the maximum score test. The method is based on an application of a likelihood-ratio-identity followed by approximations of local fields. Numerical examples illustrate the accuracy of the approximations.
Submission history
From: Yuval Nardi [view email][v1] Wed, 31 Oct 2007 02:51:45 UTC (47 KB)
[v2] Fri, 27 Jun 2008 08:22:34 UTC (111 KB)
Current browse context:
math.ST
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.