General Relativity and Quantum Cosmology
[Submitted on 1 Nov 2007 (v1), last revised 13 Dec 2007 (this version, v2)]
Title:LQG vertex with finite Immirzi parameter
View PDFAbstract: We extend the definition of the "flipped" loop-quantum-gravity vertex to the case of a finite Immirzi parameter. We cover the Euclidean as well as the Lorentzian case. We show that the resulting dynamics is defined on a Hilbert space isomorphic to the one of loop quantum gravity, and that the area operator has the same discrete spectrum as in loop quantum gravity. This includes the correct dependence on the Immirzi parameter, and, remarkably, holds in the Lorentzian case as well. The ad hoc flip of the symplectic structure that was initially required to derive the flipped vertex is not anymore needed for finite Immirzi parameter. These results establish a bridge between canonical loop quantum gravity and the spinfoam formalism in four dimensions.
Submission history
From: Carlo Rovelli [view email][v1] Thu, 1 Nov 2007 16:00:33 UTC (16 KB)
[v2] Thu, 13 Dec 2007 13:28:14 UTC (16 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.