General Relativity and Quantum Cosmology
[Submitted on 6 Nov 2007 (v1), last revised 11 Nov 2007 (this version, v2)]
Title:A conformal approach to numerical calculations of asymptotically flat spacetimes
View PDFAbstract: This thesis is concerned with the development and application of conformal techniques to numerical calculations of asymptotically flat spacetimes. The conformal compactification technique enables us to calculate spatially unbounded domains, thereby avoiding the introduction of an artificial timelike outer boundary. We construct in spherical symmetry an explicit scri-fixing gauge, i.e. a conformal and a coordinate gauge in which the spatial coordinate location of null infinity is independent of time so that no resolution loss in the physical part of the conformal extension appears. Going beyond spherical symmetry, we develop a method to include null infinity in the computational domain. With this method, hyperboloidal initial value problems for the Einstein equations can be solved in a scri-fixing general wave gauge. To study spatial infinity, we discuss the conformal Gauss gauge and the reduced general conformal field equations from a numerical point of view. This leads us to the first numerical calculation of the entire Schwarzschild-Kruskal solution including spatial, null and timelike infinity and the domain close to the singularity. After developing a three dimensional, frame based evolution code with smooth inner and outer boundaries we calculate a radiative axisymmetric vacuum solution in a neighbourhood of spatial infinity represented as a cylinder including a piece of null infinity. In this context, a certain component of the rescaled Weyl tensor representing the radiation field is calculated unambiguously with respect to an adapted tetrad at null infinity.
Submission history
From: Anil Zenginoğlu C [view email][v1] Tue, 6 Nov 2007 14:13:50 UTC (539 KB)
[v2] Sun, 11 Nov 2007 19:21:04 UTC (539 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.