Mathematics > Algebraic Geometry
[Submitted on 6 Nov 2007 (v1), last revised 18 Feb 2008 (this version, v2)]
Title:Singularities of admissible normal functions
View PDFAbstract: In a recent paper, M. Green and P. Griffiths used R. Thomas' works on nodal hypersurfaces to establish the equivalence of the Hodge conjecture and the existence of certain singular admissible normal functions. Inspired by their work, we study normal functions using M. Saito's mixed Hodge modules and prove that the existence of singularities of the type considered by Griffiths and Green is equivalent to the Hodge conjecture. Several of the intermediate results, including a relative version of the weak Lefschetz theorem for perverse sheaves, are of independent interest.
Submission history
From: Patrick Brosnan [view email][v1] Tue, 6 Nov 2007 20:42:35 UTC (21 KB)
[v2] Mon, 18 Feb 2008 23:18:47 UTC (26 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.